
Catherine Yu and Hollis Ma
COS 316 Final Project

Introduction
In 2013, Docker was released to the world. Docker is a tool that simplifies the

creation and deployment of applications by packaging software into containers.
Containers are more lightweight than virtual machines (VMs), maintaining the same
properties as VMs, and providing other benefits, including efficient, continuous, and
reliable deployment, decoupling of applications from infrastructure, portability, and
resource isolation and utilization. However, Docker only focuses on individual
containers and running them on individual machines. This is where Kubernetes (also
known as K8s) comes in--Kubernetes is a system that coordinates a cluster of
computers to deploy and manage large numbers of containers. Moreover, Kubernetes
provides several other features to manage applications safely and efficiently, including
service discovery, load balancing, automated rollouts and rollbacks, and self-healing.

Basics of Kubernetes

We begin by defining several terms and reviewing Kubernetes basic architecture
and objects. When a user deploys Kubernetes, they will receive a set of machines called
the Cluster. The machines are called Nodes and run containerized applications. Each
Cluster has a master node and at least one worker node (for the rest of the paper,
worker nodes will simply be known as Nodes). The Nodes host Pods, which are
collections of containers, and the Master Node controls the Nodes and their Pods by
communicating with Nodes via Kubelets, which are a part of each Node and ensures
that containers are running in every Pod in the Node.

To communicate between Pods, Services expose an Endpoint that objects can
send requests to, and they then redirect the request to the correct Pod to allow for
informational and behavioral manipulation of Pods.

A Deployment manages a replicated application and describes a desired state
for Pods and ReplicaSets, which maintains a specific number of Pods in a Node.
Volumes are storages within Pods and act as the memory for applications.
Namespaces are used to create virtual clusters backed by the same physical cluster.
Kubectl is a command-line tool for running commands on Kubernetes clusters, and is
used primarily by users to communicate with the Kubernetes API.

Figure 1. Cluster architecture

Figure 2. Node architecture

Naming

Every Kubernetes object has a Name and a UID to identify the object locally and
globally. The Name is a client-provided string that is unique across the object’s
resource type, and it is stored in the metadata of the object. For example, only one Pod
can have the name “1234” in the same namespace, but a Deployment can also have
the name “1234”. If the client does not specify a name for an object, Kubernetes will
auto-generate a pseudo-random name. The pool of characters that Kubernetes
randomly draws from does not include vowels and a few numbers to decrease the

chance that a “bad word” might be accidently chosen. The UID is a Kubernetes
systems-generated string to uniquely identify objects across the cluster. Every object’s
UID is distinct from any other UID created for the entire lifetime of a cluster, so the UID
helps to distinguish between historical occurrences of objects.

Kubernetes uses a specific naming convention for ReplicaSets and Pods
following a Deployment. When a client creates a Deployment, they will give the
Deployment a name. Kubernetes will create a ReplicaSet based on the Deployment
with the name by attaching a randomly generated string after it with a hyphen, i.e.
<deployment-name>-<random>. The ReplicaSet will create the Pods and name
them by adding another randomly generated string to the end of the ReplicaSet’s
name, i.e. <deployment-name>-<random>-<random>.

Figure 3. Kubernetes naming convention

Another way to identity and filter Kubernetes objects are labels, which are

key-value pairs used to identify specific attributes that are relevant to users but do not
imply semantics to the core system. Clients can use labels to get, retrieve, and organize
objects. To allocate a label to an object, the key-value pair is stored in the configuration
files of the object, and to translate a key-value pair to a set of objects, label selectors
can be used. Clients can identify objects with the same label by using two types of
label selectors, which are made up of requirements. Equality-based requirements allow
filtering by label keys and values, such as environment = production or
tier != frontend. Set-based requirements allow filtering keys by a set of values,
such as environment in (production, qa) or
tier notin (frontend, backend).

apiVersion: v1

kind: Pod

metadata:

 name: nginx-demo

 labels:

 environment: production

 app: nginx

spec:

 containers:

 - name: nginx

 image: nginx:1.7.9

 ports:

 - containerPort: 80

Example manifest for a Pod with labels

Caching

Caching is important in every large application that needs to perform actions at
specific times because it drastically lowers the time needed for certain instructions. For
Kubernetes, caching is used to quickly fetch objects so that other objects can use them.
These caches can be external caches like Redis, or internal caches which are commonly
stored in Volumes. If a client wants a cache to be available throughout an entire cluster,
persistent volumes can be used because they are accessible from anywhere within a
cluster, as opposed to volumes only being local to Nodes.

An example of caching in Kubernetes can be seen the NodeLocal DNSCache,
which caches DNS queries by Pods to make the queries more efficient. The NodeLocal
DNSCache does this by running a DNS caching agent on the Cluster Nodes as a
DaemonSet--a DaemonSet ensures that all (or some specified) Nodes run a copy of a
certain Pod. Each of these Pods will then be able to query the DNS caching agent,
avoiding the traditional, slower usage of iptables and connection tracking.

Each Kubernetes Master Node will need to schedule applications to maximize
CPU usage. The CPU Manager can determine how sensitive the processor should be to
cache misses and can also reap benefits from sharing processor resources (e.g., data
and instruction caches). Having a central scheduler also allows partitioning of CPUs
among workloads, reducing interference between resources, including not just CPUs,
but also cache hierarchies and memory bandwidth.

Figure 4. NodeLocal DNSCache architecture and flow

Resource Management

Kubernetes has many examples of resource management. We’ll first discuss
resources shared across Kubernetes objects. As defined in the Basics of Kubernetes,
Pods contain container images. These containers are tightly coupled and use the same
disk space, volume, memory, and network information (IP addresses, port number).
Pods in the same Node share the CPU and memory with each other on that Node. In
general, the total amount of compute resources available to the Node, which is made
up by the CPU, memory, and maximum number of pods that can be scheduled on that
node, is called the Node Allocatable. Some of these resources are reserved for
Kubernetes system daemons and OS system daemons.

Nodes and the Pods they contain are managed by the Master Node in a cluster.
The Master Node is responsible for maintaining the desired state of the cluster through
communication with the rest of the cluster and running the scheduler and controllers,
specifically through its components: kube-apiserver, etcd, kube-scheduler,
kube-controller-manager, cloud-controller-manager. The first two
components respectively provide a frontend to the cluster’s shared state for the objects
in the cluster and provide a backing store for all cluster data. We will discuss the latter
three in the following paragraphs.

Controllers are like thermostats--they work to maintain the desired state of the
cluster, and they try to move the current cluster state closer to this desired state. Each
Controller tracks at least one Kubernetes resource type. Most Controllers interact with
the cluster API server, although some act by direct control. Kubernetes has built-in
controllers that run in the kube-controller-manager, which include a Node Controller
(Nodes), Replication Controller (ReplicaSets), Deployment Controller (Deployments),

and more. Many of these controllers also have cloud provider dependencies, which are
taken care of by the cloud-controller-manager.

Scheduling in Kubernetes means making sure that Pods are matched to Nodes
so that their containers can be run by Kubelet in the Nodes. kube-scheduler is the
default scheduler and is in charge of watching for newly created Pods without a Node
assignment. Every container has different requirements for resources, and every Pod
has its own requirements for resources, so if there are no feasible Nodes, the Pod will
have to wait until the scheduler can assign it somewhere. The scheduler decides where
to assign new Pods based on scheduling policies. There are 2 steps: 1) filtering and 2)
scoring. In filtering, the scheduler finds a set of feasible Nodes to schedule the Pod, and
in scoring, the scheduler ranks the Nodes to choose the best placement--the Node with
the highest ranking (randomly chosen if there is a tie) has priority. Lastly, the scheduler
notifies the API server about its decision in a process called binding.

Filtering → → Scoring → → Binding

e.g. PodFitsResources: check if
Node has free resources for Pod
e.g. CheckNodeMemoryPressure:
Pod won’t be scheduled on a Node
if it has memory pressure

e.g. LeastRequestedPriority:
favors nodes with fewer resources
e.g. ImageLocalityPriority:
favors nodes that already have
container images for Pod cached

In large clusters, the user can define a percentageOfNodesToScore

parameter to dictate how many Nodes they want to include in the assignment process
(a percentage of the total cluster size), which improves scheduler performance. In this
case, the scheduler will scan the Nodes in round-robin fashion.

We will now discuss resource requirements of containers and Pods, which were
mentioned in scheduling but not clarified. When a user specifies a Pod, they can also
specify how much CPU and memory (RAM) each container needs in terms of a request
and a limit for each resource. The request is the amount that the system will guarantee
to the container, while the limit is the maximum amount the system will allow the
container to use. When the request is less than the limit, Kubernetes can oversubscribe
Nodes while maintaining resource guarantees, increasing utilization of Nodes overall.

The Pod’s resource requirements are calculated by totalling the resource
requirements of all the containers in the Pod. However, the Pod itself also requires
system resources for its infrastructure, called the Pod Overhead. Together, these
requirements are used for scheduling the Pod on Nodes. Using CPU and memory
requests and limits give Pods a better chance of being scheduled. Not setting a limit

means that a Pod has no upper bound on the CPU power it uses, which may lead to
starvation of other Pods and Nodes.

...

spec:

 containers:

 - name: nginx

 image: nginx:1.7.9

 resources:

 limits:

 cpu: “1”

 memory: “200Mi”

 requests:

 cpu: “0.5”

 memory: “100Mi”

Example Pod with resource requirements

Lastly, CPU is managed on Nodes by Kubelets and the CPU Manager. In
general, Kubelets use Completely Fair Scheduler (CFS) quota to enforce pod CPU limits,
but Kubelets also allow alternative CPU management policies in cases where workload
performance may be affected. This is provided by the CPU Manager, which enables
better placement of workloads by allocating exclusive CPUs to certain containers and
can provide better performance in different scenarios such as increased context
switches. The CPU Manager can especially help workloads that are sensitive to CPU
throttling, processor cache misses, context switches, cross-socket memory traffic, and
hyperthreads.

Another resource managed by Kubernetes deals with networks and includes
network bandwidth and endpoints. Pods need to communicate with other Pods to be
able to query or send information and manipulate the state or behavior of other Pods.
To identity which Pod is being queried to or from, Pods use their unique IP addresses,
which are dependent on which machine they live on. However, a problem surfaces
when Pods die and the applications running in that Pod are relocated. The IP addresses
of where those applications are running change, and normally an iptable is used to
reflect these changes, but iptables have high overhead and can become slow in high
traffic networks.

Kubernetes solves this communication problem by using Services, which are an
abstract way to expose an application running on a set of Pods as a network service.
This microservice is a REST object that receives requests to Endpoints that get updated

whenever the set of Pods in a Service change, and forwards them to the relevant set of
Pod. By abstracting away the process of querying a specific Pod, Services allow for
efficient management of Endpoints and network bandwidth due to the decrease in
complexity and overhead of determining how to route a request.

Kubernetes has recently introduced another endpoint management feature in the
form of Endpoint Slices, which allow for distributing network endpoints across multiple
resources. This dissemination ensures that no single Endpoint gets overloaded and also
spreads out endpoint traffic to improve performance.

There are many alternatives to Services and Endpoints, but the policies these
methods use to manage resources lead to inefficiencies. For example, instead of
proxying to forward inbound traffic to backends, Kubernetes could configure DNS
records and use round-robin name resolution. The problem with this is that some apps
do not respect TTLs and cache results after they should have expired or do DNS
lookups only once then cache the results indefinitely.

Another alternative that still uses proxying is the user space proxy mode, where
a kube-proxy opens or closes a port on a local Node whenever a Service or Endpoint is
added or removed. A limitation of this mode is that it obscures the source IP address of
packets accessing a Service, so certain kinds of network filtering like firewalling become
impossible.

Finally, we will discuss management of storage. Each Pod has Volumes, which
provide storage for containers in a Pod, are accessible to all containers in a Pod, and
preserve container files even if the container restarts. Volumes cease to exist when the
Pod ceases to exist. A Volume can be shared for multiple uses by specifying a subPath.

...

spec:

 containers:

 - name: mysql

 image: mysql

 volumeMounts:

 - mountPath: /var/lib/mysql

 name: site-data

 subPath: mysql

 ...

 volumes:

 - name: site-data

Example Pod with a LAMP stack using a single, shared volume.
The databases are stored in the mysql folder, an example of subPath.

Kubernetes also allows for a cluster-wide storage system composed of two
resources. A Persistent Volume (PV) is a piece of storage that remains unchanged
even when Nodes and Pods die. PVs are a level of abstraction above that of the actual
implementation of the storage, which may be NFS, CSI, or other supported types. A
PersistentVolumeClaim (PVC) is a request for storage by a user; similar to a Pod
consuming Node resources, PVCs consume PV resources, and similar to a Pod having
specific requirements, PVCs can request specific sizes and access modes.

Virtualization

There are various instances of virtualization throughout the Kubernetes system
where Kubernetes presents resources to multiple users/objects as though they each
have exclusive access to those resources. This virtual sharing of resources happens at
all levels in the Kubernetes ecosystem--from Container images and memory, to clusters
and Kubelets. We analyze virtualization in all the levels going from the bottom up.

The lowest level of virtualization that Kubernetes brings into play is the
relationship between containers and the applications they run. Each application is
presented with a virtual OS supplied by a container, and it appears to the application
that they are the only user of that OS. This virtualization allows a large number of
applications to run in parallel on fewer computers than if each application had its own
physical OS, and also allows for more modularity in terms of OS compatibility.

Containers can be grouped together to form a Pod. Pods use virtualization to
increase modularity and reusability of containers, facilitate intra-pod communication,
provides ease of management and flexibility for application architectures, and allows
containers to share volumes, network, CPU, and more. For example, if we are running
an app server pod that contains the app server itself, a logging adapter, and a
monitoring adapter, Pods virtualization makes it easier to connect these containers and
also allows the logging and monitoring containers to be used in other Pods.

Each Pod is contained in a Node, which allow Pods to run as if they are the only
application running on their virtual or physical machine. Pods can read and write to
memory, handle I/O, create their own filesystems, and do whatever they want--all as if
they are the only user of their machine. This is possible because of how the Nodes
virtualize machines by handling the containers’ memory use, CPU usage, etc.

To figure out which applications a Node needs to run, Kubelets handle
communication with the Master Node and the other Nodes in a cluster. The Kubelets
use virtualization by being the sole bridge between Nodes and the Master, such that
each Node appears to be the only Node receiving instructions on which apps to run,
increasing flexibility and reusability of Nodes while decreasing chances of collisions and
confusion.

Another example of virtualization within Nodes come in the form of Services,
which create a query-able endpoint for outside entities to manipulate and communicate
with Nodes. Services allow for one-to-one communication between Nodes and other
objects--each Node receives queries that are meant exclusively for them and each
queryer is presented with exclusive access to Services and abstracts away the specifics
of which IP address to query. This virtualization allows for faster requests and
responses and a cleaner, clearer method of communication.

The final instance of virtualization we consider are Namespaces, which support
creating different virtual clusters that reside on the same physical cluster. Each of these
virtual clusters is unaware of the other virtual clusters and uses the physical cluster as if
it were the only virtual cluster. This virtualization allows for users of different
teams/projects to be separate but still share resources.

Figure 5. Another diagram of cluster architecture

Access Control

There are two types of users in Kubernetes: normal users, which are for humans,
and Kubernetes service accounts, which are for processes in Pods. Normal users are
managed by an outside, independent service, such as Google Accounts, or even a file
with usernames and passwords. Service accounts are managed by the Kubernetes API,
and they are either created automatically by the API server or manually by API calls.
Their differences are compared and listed in the table on the following page.

Normal users Kubernetes service accounts

● Not represented by any user account
object in Kubernetes

● Intended to be global, names unique
across all namespaces

● Typically synced from corporate
database - new user account
creation requires privileges, tied to
business procedures

● Tied to credentials stored as Secrets,
which are in Pods

● Bound to namespaces
● Allows processes to talk to API
● Lightweight creation - cluster users

can create accounts for specific
tasks, based on the principle of least
privilege (min. access rights)

Both normal users and service accounts can communicate with the system

through the Kubernetes API using kubectl, client libraries, or REST requests. Any
requests made by a user must follow a 4-step process to be successful.

Figure 6. Kubernetes access control process

The first step is Authentication. Authenticator modules are run by the cluster

admin or a creation script, which include client certificates, bearer tokens, HTTP basic
auth, or authenticating proxy. Although the input is an entire HTTP request, the
modules usually examine the headers and/or client certificate and attempt to associate
a username, UID, groups, and extra fields with the request. At least two methods
should be used--service account tokens for service accounts, and another method for
user authentication (e.g. authenticating proxy). When multiple methods are enabled,
the first one to successfully authenticate short circuits the rest. If the request cannot be
authenticated, it is rejected with the HTTP status code 401. If it is successful, the user
is authenticated as a specific username, and some authenticators also provide group

memberships. Again, Kubernetes does not store “user” objects or information, and
simply uses the username for access control.

The second step is Authorization. A request must include the username,
requested action, and affected object in addition to other attributes like group, API
request verb, and HTTP request verb; it is authorized if the existing authorization policy
declares that the user has permissions for the action. If any module authorizes the
request, it passes, but if a request is denied by all the modules, it is rejected with HTTP
status code 403.

Kubernetes supports multiple authorization modules, which can be configured
using the flag --authorization-mode=<module>, for example,
--authorization-mode=ABAC or --authorization-mode=Node.
First, we have role-based access control (RBAC). RBAC regulates access based on
roles of individual users--a Role contains rules that represent a set of permissions in
one namespace, while a ClusterRole applies cluster-wide. Next, we have
attribute-based access control (ABAC), where access rights are granted to users
through the use of policies which combine attributes together. Request attributes
correspond to properties of a “policy object”. Third, we have Node authorization, which
authorizes API requests made by Kubelets. Kubelet can perform API operations: reads,
writes, and authorization-related operations. Lastly, Webhook mode is a HTTP
callback: an HTTP POST will be sent when something happens.

apiVersion: abac.auth.k8s.io

kind: Policy

spec:

 user: “bob”,

 namespace: “projCaribou”,

 resource: “pods”,

 readonly: true

apiVersion: auth.k8s.io

kind: SubjectAccessReview

spec:

 resourceAttributes:

 namespace: “projCaribou”,

 verb: “get”

 resource: “pods”

Example of a user policy (left) and a request (right)
If Bob has the policy on the left, his request will be authorized
because he can read objects in the projCaribou namespace.

If Bob makes a request to write (create, get), his request will be denied.
If Bob makes a request to objects in a different namespace, it will be denied.

The third step is Admission Control. Admission Control Modules are software

modules that can modify or reject requests as they can access the contents of an object
being created or updated. Control modules can be “validating” modules, which cannot
modify objects, “mutating” modules, which can modify objects, or both. Mutating

controllers check requests first, then validating controllers. Modules can be set using
the flag --admission-control=<list-of-modules>, for example,
--admission-control=NamespaceLifecycle,ResourceQuota. If any module
rejects a request, it is immediately rejected.

The last step is validation. The request is validated using validation routines for
their corresponding API object (Pod, Node, etc.) and then written to the object store.

Performance

When dealing with the deployment and maintenance of large scale applications,
Kubernetes needs to be wary of performance issues and scalability to provide clients
with a consistent and reliable container-orchestration system. A common technique to
test performance of a cluster is to aggregate runtime data across Nodes and
containers in the cluster, then compare them across times or against other similar
clusters to see how the target cluster compares. Basic monitoring tools like Heapster,
Prometheus, Grafana, InfluxDB, and CAdvisor can also report on ongoing operational
behaviors and detect dangerous situations.

Aside from facilitating cluster performance monitoring, Kubernetes also boasts a
strong and helpful community and team that have solved many problems in the past
few years. Recently, a team at Airbnb encountered a performance issue while using
Kubernetes. Since Kubernetes uses multitenancy (single instance serving multiple
applications) for using the CPU, performance problems can arise, such as the Noisy
Neighbors Problem, where a CPU-intensive process hogs CPU time and starves other
applications from using the CPU. Kubernetes solves this by using the Linux kernel’s
CFS bandwidth control, which allocates CPU time to pre-defined groups, but this
sometimes makes a Node appear slow even if nothing else is happening on the CPU.
Since then, the Kubernetes community has implemented changes to combat these
problems to make CRFS quota periods configurable or just disabling CPU quotas
entirely.

The Kubernetes team also monitors the performance of clusters and detects
potential regressions by creating a 100-node cluster every couple hours and running
scalability tests on it. They focus on the full cluster case, where each Node has a full 30
Pods running, to test the most performance demanding scenario. The tests they run
mimic what a user might do: populating Pods and replication controllers to fill the
cluster, generating a load and recording performance measures, stopping all running
Pods and replication controllers, and scraping metrics and checking if they match their
expectations. From these tests, Kubernetes has identified hindrances to performance
and implemented fixes.

 A few years ago, the team set a goal of being able to run tests on 1000-node
clusters instead of 100-node clusters and listed several possible improvements that
included moving events out from etcd, using better json parsers, and rewriting the
scheduler. They have since then met the 1000-node cluster goal by implementing
several changes, the main one being creating a read cache at the API server level. The
team also has weekly meetings for the Kubernetes Scale Special Interest Group where
they discuss ongoing issues and plans for performance tracking and improvements.

Scale

An important reason why people use Kubernetes is because it scales efficiently
and effectively. There are three main ways to scale an application in Kubernetes:
Horizontal Pod Autoscaler, Vertical Pod Autoscaler, and Cluster Autoscaler. Each of
these processes involves automatically detecting when an application needs more or
less resources and then implements changes to counteract the imbalance of resources.

Horizontal Pod Autoscaling is usually triggered when the CPU or memory
meets a certain threshold, and in response HPA changes the number of Pod replicas to
scale the number of Pods in the cluster. Vertical Pod Autoscaling allocates more or
less CPU or memory to existing Pods, which then takes effect when the Pods restart.
Kubernetes automatically calculates suggested CPU and memory values based on
historic measures. Cluster Autoscaler scales cluster Nodes based on pending Pods,
which are Pods that are waiting to be assigned to a Node. If there are one or more Pods
in the pending state due to lack of available resources on cluster, then CA attempts to
provision one or more additional Nodes. When the Node is granted by the cloud
provider (e.g., AWS, Azure, Google Cloud), the Node joins the cluster and becomes
ready to serve the pending Pods.

Figure 6. HPA, VPA, CA overview

Once an application becomes large, updating it becomes difficult. Users expect
applications to be up and running all the time and developers need to deploy new
versions of the application, sometimes a few times a day. Kubernetes facilitates a
smooth updating process by using rolling updates, allowing a Deployment’s update to
occur with zero downtime by incrementally updating Pods. Each update is versioned to
support reverting Deployments in case something goes wrong, also known as a
Rollback. Rolling updates and scaling allow for easy promotion of an app from one
environment to another, rollbacks to previous versions, and continuous integration and
delivery of applications with zero downtime.

In addition to rolling updates, another feature that Kubernetes uses to facilitate
the scaling process is canary testing, or canary releases. Updates to an application
often contain bugs or performance issues, and detecting these bugs and performing
damage recovery quickly makes canary testing an essential tool for Kubernetes users.
Kubernetes uses canary testing to slowly roll out changes to a small subset of users
before rolling it out to the entire platform. These tests can be automated and can send
alerts so that any negative changes can be quickly reversed by routing traffic away
from the canary or by rolling back the canary update.

Why use Kubernetes?

“Kubernetes solves a fundamental problem in distributed computing: how to
keep large-scale, containerized applications that are subject to continuous change, both
in terms of features and resource requirements, running reliably on the internet.
Kubernetes solves the problem by using the concept of a predefined state to create, run

and maintain container-driven applications over a cluster of physical or virtual
machines.” - Bob Reselman

Kubernetes is a largely supported computer system that is constantly being
updated and worked on by a strong open source community. Kubernetes has its own
KubeCon convention specifically for developers and users of Kubernetes with over
8000 people in attendance at the most recent event. Kubernetes also has its own Slack
and Stack Overflow community and GitHub community repository.

Kubernetes is easier to use and has more users and growth than its alternatives,
with many tutorials and comprehensive documentation to help users learn. Supported
by major computing engines and cloud software including Google Cloud, Azure, and
AWS, Kubernetes has also won the Most Impact Award at OSCON, and is #1 in terms
of activity on GitHub.

Sources
General

● Documentation Home: https://kubernetes.io/docs/home/
● Basic Tutorial: https://kubernetes.io/docs/tutorials/kubernetes-basics/
● GitHub Repo: https://github.com/kubernetes/kubernetes

○ https://godoc.org/k8s.io/kubernetes
● Community Repo: https://github.com/kubernetes/community
● Building Kubernetes: https://github.com/kubernetes/kubernetes/tree/master/build

Articles

● https://kubernetes.io/blog/2018/07/20/the-history-of-kubernetes-the-communit
y-behind-it/

● https://kubernetes.io/docs/setup/learning-environment/minikube/
● https://thenewstack.io/kubernetes-an-overview/
● https://coreos.com/kubernetes/docs/latest/pods.html

Basics
Figure 1:
https://kubernetes.io/docs/tutorials/kubernetes-basics/deploy-app/deploy-intro/
Figure 2: https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/

Naming
Figure 3: https://medium.com/faun/kubernetes-pod-naming-convention-78272fcc53ed

● https://kubernetes.io/docs/concepts/overview/working-with-objects/names/
● https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
● https://stackoverflow.com/questions/46204504/kubernetes-pod-naming-conven

tion
● https://github.com/kubernetes/community/blob/master/contributors/design-prop

osals/architecture/identifiers.md
● https://github.com/kubernetes/kubernetes/blob/2183a84feb564582489d56c65

70917959f003726/staging/src/k8s.io/apimachinery/pkg/util/rand/rand.go#L80-L
90

Caching
Figure 4: https://kubernetes.io/docs/tasks/administer-cluster/nodelocaldns/

● https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/dns/nodel
ocaldns

https://kubernetes.io/docs/home/
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://github.com/kubernetes/kubernetes
https://godoc.org/k8s.io/kubernetes
https://github.com/kubernetes/community
https://github.com/kubernetes/kubernetes/tree/master/build
https://kubernetes.io/blog/2018/07/20/the-history-of-kubernetes-the-community-behind-it/
https://kubernetes.io/blog/2018/07/20/the-history-of-kubernetes-the-community-behind-it/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://thenewstack.io/kubernetes-an-overview/
https://coreos.com/kubernetes/docs/latest/pods.html
https://kubernetes.io/docs/tutorials/kubernetes-basics/deploy-app/deploy-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/
https://medium.com/faun/kubernetes-pod-naming-convention-78272fcc53ed
https://kubernetes.io/docs/concepts/overview/working-with-objects/names/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://stackoverflow.com/questions/46204504/kubernetes-pod-naming-convention
https://stackoverflow.com/questions/46204504/kubernetes-pod-naming-convention
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/architecture/identifiers.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/architecture/identifiers.md
https://github.com/kubernetes/kubernetes/blob/2183a84feb564582489d56c6570917959f003726/staging/src/k8s.io/apimachinery/pkg/util/rand/rand.go#L80-L90
https://github.com/kubernetes/kubernetes/blob/2183a84feb564582489d56c6570917959f003726/staging/src/k8s.io/apimachinery/pkg/util/rand/rand.go#L80-L90
https://github.com/kubernetes/kubernetes/blob/2183a84feb564582489d56c6570917959f003726/staging/src/k8s.io/apimachinery/pkg/util/rand/rand.go#L80-L90
https://kubernetes.io/docs/tasks/administer-cluster/nodelocaldns/
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/dns/nodelocaldns
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/dns/nodelocaldns

Resource Management
● https://kubernetes.io/docs/tasks/administer-cluster/reserve-compute-resources/#

node-allocatable
● https://kubernetes.io/docs/concepts/overview/components/#master-components
● https://kubernetes.io/docs/concepts/architecture/controller/
● https://kubernetes.io/docs/concepts/scheduling/kube-scheduler/
● https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-c

ontainer/
● https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resour

ce/
● https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/
● https://github.com/kubernetes/community/blob/master/contributors/design-prop

osals/node/resource-qos.md
● https://kubernetes.io/blog/2018/07/24/feature-highlight-cpu-manager/
● https://kubernetes.io/docs/tasks/administer-cluster/cpu-management-policies/
● https://kubernetes.io/docs/concepts/services-networking/endpoint-slices/
● https://kubernetes.io/docs/concepts/services-networking/service/
● https://kubernetes.io/docs/concepts/storage/volumes/
● https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Virtualization
Figure 5: https://kubernetes.io/docs/concepts/overview/components/

Access Control

● https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
● https://kubernetes.io/docs/reference/access-authn-authz/authorization/
● https://github.com/kubernetes/kubernetes/tree/master/plugin/pkg/auth
● https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/
● https://kubernetes.io/docs/reference/access-authn-authz/authentication/

Performance and Scale
Figure 6:
https://medium.com/magalix/kubernetes-autoscaling-101-cluster-autoscaler-horizontal
-pod-autoscaler-and-vertical-pod-2a441d9ad231

● https://thenewstack.io/kubernetes-performance-troublespots-airbnbs-take/
● https://www.getambassador.io/docs/dev-guide/canary-release-concepts/
● https://blog.gurock.com/kubernetes-performance-testing/
● https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/

#canary-deployments

https://kubernetes.io/docs/tasks/administer-cluster/reserve-compute-resources/#node-allocatable
https://kubernetes.io/docs/tasks/administer-cluster/reserve-compute-resources/#node-allocatable
https://kubernetes.io/docs/concepts/overview/components/#master-components
https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/docs/concepts/scheduling/kube-scheduler/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/node/resource-qos.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/node/resource-qos.md
https://kubernetes.io/blog/2018/07/24/feature-highlight-cpu-manager/
https://kubernetes.io/docs/tasks/administer-cluster/cpu-management-policies/
https://kubernetes.io/docs/concepts/services-networking/endpoint-slices/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://github.com/kubernetes/kubernetes/tree/master/plugin/pkg/auth
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://medium.com/magalix/kubernetes-autoscaling-101-cluster-autoscaler-horizontal-pod-autoscaler-and-vertical-pod-2a441d9ad231
https://medium.com/magalix/kubernetes-autoscaling-101-cluster-autoscaler-horizontal-pod-autoscaler-and-vertical-pod-2a441d9ad231
https://thenewstack.io/kubernetes-performance-troublespots-airbnbs-take/
https://www.getambassador.io/docs/dev-guide/canary-release-concepts/
https://blog.gurock.com/kubernetes-performance-testing/
https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/#canary-deployments
https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/#canary-deployments

